Введение

При изучении любого объекта первый и наиболее существенный шаг состоит в том, чтобы найти принципы численной оценки и прак-тические методы измерения некоторого качества, присущего этому объекту. Когда вы не можете измерить и выразить в числах то, о чем говорите – ваше знание предмета недостаточно и неудовлетворительно.

У.Кельвин

Излишнее стремление к точности стало оказывать действие, сводящее на нет теорию управления и теорию систем, так как оно приводит к тому, что исследования в этой области сосредоточиваются на тех и только тех проблемах, которые поддаются точному решению. Многие классы важных проблем, в которых данные, цели и ограничения являются слишком сложными или плохо определенными для того, чтобы допустить точный математический анализ, оставались и остаются в стороне лишь по той причине, что они не поддаются математической трактовке.

Л.Заде

Среди современных производственных процессов найдется немало таких, которые обладают комплексом неожиданных для классической теории автоматического управления (ТАУ) качеств. Этим «неудобным» или, как их еще принято называть, «слабоструктурированным» или «плохо определенным» объектам присущи такие свойства, как уникальность, отсутствие формализуемой цели существования и оптимальности, нестационарность структуры и параметров, неполнота или практически полное отсутствие формального описания объекта [1]. Плохо определенные объекты сравнительно мало изучены, что существенно затрудняет их точное математическое описание. Управление слабоструктурированными объектами представляет с точки зрения классической ТАУ довольно сложную, практически неразрешимую задачу. Это вызвано тем, что при построении традиционной системы автоматического управления (САУ) необходимо предварительно формально описать объект управления и сформировать критерии управления на базе математического аппарата, оперирующего количественными категориями. В случае, если невозможно дать точное математическое описание объекта и критериев управления им в количественных терминах, традиционная ТАУ оказывается неприменимой. К примеру, классическая ТАУ детерминированными и стохастическими системами успешно применяется для построения САУ летательными аппаратами, энергетическими установками и т.п., но попытки распространения традиционных методов на такие области, как биосинтез, многофазные химико-технологические процессы, связанные с обжигом, плавкой, катализом и т.п., не дали ощутимых практических результатов, несмотря на все более усложняющиеся математические методы их описания.

Однако, на практике подобными слабоструктурированными объектами достаточно успешно управляет человек-оператор, которого выручают способности наблюдать, анализировать и запоминать информацию, делать определенные выводы и.т.п., и, как следствие, принимать правильные решения в обстановке неполной и нечеткой информации. Благодаря своему интеллекту, человек может оперировать не только с количественными (что в определенной степени может и машина), но и с качественными неформализованными понятиями, вследствие чего довольно успешно справляется с неопределенностью и сложностью процесса управления [2]. Поэтому построение моделей приближенных рассуждений человека и использование их в САУ представляет сегодня одно из важнейших направлений развития ТАУ. Не вызывает сомнений, что существенное повышение эффективности управления сложными объектами заключается в создании интеллектуальных САУ, способных в той или иной степени воспроизводить определенные интеллектуаль-ные действия человека, связанные с приобретением, анализом, классификацией знаний в предметной области управления технологическим процессом, а также оперирующих знаниями, накопленными человеком-оператором или самой системой в ходе практической деятельности по управлению объектом [3]-[6].

В связи с бурным развитием вычислительной техники в последнее время началось использование новых методов интеллектуального управления в промышленности. И хотя первые применения интеллектуальных САУ состоялись в Европе, наиболее интенсивно внедряются такие системы в Японии. Спектр приложений их широк: от управления промышленными роботами, ректификационными установками и доменными печами до стиральных машин, пылесосов и СВЧ-печей. При этом интеллектуальные САУ позволяют повысить качество продукции при уменьшении ресурсо и энергозатрат и обеспечивают более высокую устойчивость к воздействию возмущающих факторов по сравнению с традиционными САУ.

Теория интеллектуальных САУ является довольно молодой и, по сути, находится еще в стадии становления. Поэтому стремительное расширение областей практического применения принципов интеллек-туального управления привело к постановке целого ряда проблем и новых задач в данной области, таких как разработка методов математического описания, анализа устойчивости и оценки качества интеллектуальных САУ; создание инструментальных средств проектирования и методов синтеза интеллектуальных САУ и т.п. [7].

Одним из направлений в современной технологии управления является нечеткое управление (fuzzy control). Теория нечеткого управления является одной из ветвей теории интеллектуальных систем и активно применяется в настоящее время для синтеза нечетких регуляторов, гибридных регуляторов, нечетких поисковых систем автоматической оптимизации, нечетких устройств оценивания и фильтрации. Методы, развиваемые в теории нечеткого управления, опираются на математическую теорию нечетких множеств и построенную на ее основе нечеткую логику (fuzzy logic), которая позволяет оперировать неопределенной или нечеткой информацией, не интерпретируемой в количественных терминах. Поэтому при управлении сложными процессами, не имеющими точного количественного математического описания, нечеткие системы по сравнению с традиционными имеют лучшую помехозащищенность, быстродействие и точность за счет более адекватного описания реальной среды, в которой они функционируют.

Основная цель данного учебного пособия - дать доступное введе-ние в одну из интереснейших, мало изученных, но бесспорно перспективных областей современной теории автоматического управления – нечеткого управления в технических системах, как одного из направлений теории интеллектуальных систем.