2.6. Нечеткая логика

Классическая логика по определению не может оперировать с нечетко очерченными понятиями, поскольку все высказывания в формальных логических системах могут иметь только два взаимоисключающих состояния: «истина» со значением истинности «1» и «ложь» со значением истинности «0». Одной из попыток уйти от двузначной бинарной логики для описания неопределенности было введение Лукашевичем трехзначной логики с третьим состоянием «возможно» со значением истинности «0,5». Введя в рассмотрение нечеткие множества, Заде предложил обобщить классическую бинарную логику на основе рассмотрения бесконечного множества значений истинности. В предложенном Заде варианте нечеткой логики множество значений истинности высказываний обобщается до интервала 0 ; 1 , т.е. включает как частные случаи классическую бинарную логику и трехзначную логику Лукашевича. Такой подход позволяет рассматривать высказывания с различными значениями истинности и выполнять рассуждения с неопределенностью.

Нечеткое высказывание – это законченная мысль, об истинности или ложности которой можно судить только с некоторой степенью уверенности 0 ; 1 : «возможно истинно», «возможно ложно» и т.п. Чем выше уверенность в истинности высказывания, тем ближе значение степени истинности к 1 . В предельных случаях 0 , если мы абсолютно уверены в ложности высказывания, и 1 , если мы абсолютно уверены в истинности высказывания, что соответствует классической бинарной логике. В нечеткой логике нечеткие высказывания обозначаются так же, как и нечеткие множества: A , B , C . Введем нечеткое отображение T : Ω 0 ; 1 , которое действует на множестве нечетких высказываний Ω = A , B , C . В этом случае значение истинности высказывания A Ω определяется как T A 0 ; 1 и является количественной оценкой нечеткости, неопределенности, содержащейся в высказывании A .

Логическое отрицание нечеткого высказывания A обозначается ¬ A – это унарная (т.е. производимая над одним аргументом) логическая операция, результат которой является нечетким высказыванием «не A », «неверно, что A », значение истинности которого:

T ¬ A = 1 T A .

Помимо приведенного выше исторически принятого основного определения нечеткого логического отрицания (нечеткого «НЕ»), введенного Заде, могут использоваться следующие альтернативные формулы:

T ¬ A = 1 T A 1 + λT A , λ > 1, – нечеткое λ -дополнение по Сугено;

T ¬ A = 1 T A p , p > 0, – нечеткое p -дополнение по Ягеру.

Логическая конъюнкция нечетких высказываний A и B обозначается A B – это бинарная (т.е. производимая над двумя аргументами) логическая операция, результат которой является нечетким высказыванием « A и B », значение истинности которого:

T A B = min T A ; T B .

Помимо приведенного выше исторически принятого основного определения логической конъюнкции (нечеткого «И»), введенного Заде, могут использоваться следующие альтернативные формулы:

T A B = T A T B – в базисе Бандлера-Кохоута;

T A B = max T A + T B 1 ; 0 – в базисе Лукашевича-Гилеса;

T A B = T B , при T A = 1 ; T A , при T B = 1 ; 0, в остальных случаях; – в базисе Вебера.

Логическая дизъюнкция нечетких высказываний A и B обозначается A B – это бинарная логическая операция, результат которой является нечетким высказыванием « A или B », значение истинности которого:

T A B = max T A ; T B .

Помимо приведенного выше исторически принятого основного определения логической дизъюнкции (нечеткого «ИЛИ»), введенного Заде, могут использоваться следующие альтернативные формулы:

T A B = T A + T B T A T B – в базисе Бандлера-Кохоута;

T A B = min T A + T B ; 1 – в базисе Лукашевича-Гилеса;

T A B = T B , при T A = 0 ; T A , при T B = 0 ; 1, в остальных случаях; – в базисе Вебера.

Нечеткая импликация нечетких высказываний A и B обозначается A B – это бинарная логическая операция, результат которой является нечетким высказыванием «из A следует B », «если A , то B », значение истинности которого:

T A B = max min T A ; T B ; 1 T A .

Помимо приведенного выше исторически принятого основного определения нечеткой импликации, введенного Заде, могут использоваться следующие альтернативные определения нечеткой импликации, предложенные различными исследователями в области теории нечетких множеств:

T A B = max 1 T A ; T B – Гедель;

T A B = min T A ; T B – Мамдани;

T A B = min 1 ; 1 T A + T B – Лукашевич;

T A B = min 1 ; T B T A , T A > 0 – Гоген;

T A B = min T A + T B ; 1 – Лукашевич-Гилес;

T A B = T A T B – Бандлер-Кохоут;

T A B = max T A T B ; 1 T A – Вади;

T A B = 1, T A T B ; T B , T A > T B ; – Бауэр.

Общее число введенных определений нечеткой импликации не ограничивается приведенными выше. Большое количество работ по изучению различных вариантов нечеткой импликации обусловлено тем, что понятие нечеткой импликации является ключевым при нечетких выводах и принятии решений в нечетких условиях. Наибольшее применение при решении прикладных задач нечеткого управления находит нечеткая импликация Заде.

Нечеткая эквивалентность нечетких высказываний A и B обозначается A B – это бинарная логическая операция, результат которой является нечетким высказыванием « A эквивалентно B », значение истинности которого:

T A B = min max T ¬ A ; T B ;max T A ; T ¬ B .

Так же, как в классической бинарной логике, в нечеткой логике с помощью рассмотренных выше логических связок можно формировать достаточно сложные логические высказывания.