2.2. Функции принадлежности и методы их построения

Введенное определение нечеткого множества (2.1) не накладывает ограничений на выбор функции принадлежности. Однако, на практике целесообразно использовать аналитическое представление функции принадлежности μ A x нечеткого множества A с элементами x, нечетко обладающими определяющим множество свойством R. Типизация функций принадлежности в контексте решаемой технической задачи существенно упрощает соответствующие аналитические и численные расчеты при применении методов теории нечетких множеств. Выделяют следующие типовые функции принадлежности [32], [33].

Треугольные функции принадлежности, использующиеся для задания неопределенностей типа: «приблизительно равно», «среднее значение», «расположен в интервале», «подобен объекту», «похож на предмет» и т.п.:

Существует множество других функций принадлежности нечетких множеств, заданных как композиции вышеупомянутых базовых функций (двойная гауссова, двойная сигмоидальная и т.п.), либо как комбинации по участкам возрастания и убывания (сигмоидально-гауссова, сплайн-треугольная и т.п.).

Функция принадлежности μ A x – это некоторая не вероятностная субъективная мера нечеткости, определяемая в результате опроса экспертов о степени соответствия элемента x понятию, формализуемому нечетким множеством A . В отличие от вероятностной меры, которая является оценкой стохастической неопределенности, имеющей дело с неоднозначностью наступления некоторого события в различные моменты времени, нечеткая мера является численной оценкой лингвистической неопределенности, связанной с неоднозначностью и расплывчатостью категорий человеческого мышления. При построении функции принадлежности μ A x с каждым нечетким множеством A ассоциируется некоторое свойство, признак или атрибут R , который характеризует некоторую совокупность объектов X . Чем в большей степени конкретный объект x ∈ X обладает этим свойством R , тем более близко к соответствующее значение μ A x . Если элемент x ∈ X определенно обладает этим свойством R , то μ A x = 1 , если же x ∈ X определенно не обладает этим свойством R , то μ A x = 0 . Существуют прямые и косвенные методы построения функций принадлежности [18]-[20].

Прямые методы (наиболее известны методы относительных частот, параметрический, интервальный) целесообразно использовать для измеримых свойств, признаков и атрибутов, таких как скорость, время, температура, давление и т.п. При использовании прямых методов зачастую не требуется абсолютно точного поточечного задания μ A x . Как правило, бывает достаточно зафиксировать вид функции принадлежности и характерные точки, по которым дискретное представление функции принадлежности аппроксимируется непрерывным аналогом – наиболее подходящей типовой функцией принадлежности.

Косвенные методы (наиболее известен метод парных сравнений) используются в тех случаях, когда отсутствуют измеримые свойства объектов в рассматриваемой предметной области. В силу специфики рассматриваемых задач при построении нечетких систем автоматического управления, как правило, применяются прямые методы. В свою очередь, в зависимости от числа привлеченных к опросу экспертов как прямые, так и косвенные методы делятся на одиночные и групповые. Наиболее грубую оценку характеристических точек функции принадлежности можно получить путем опроса одного эксперта, который просто задает для каждого значения x ∈ X соответствующее значение μ A x .

Пример. Рассмотрим нечеткое множество A , соответствующее понятию «расход теплоносителя небольшой». Объект x – расход теплоносителя, X 0; x max – множество физически возможных значений скорости изменения температуры. Эксперту предъявляются различные значения расхода теплоносителя x и задается вопрос: с какой степенью уверенности 0 ≤ μ A x ≤ 1 эксперт считает, что данный расход теплоносителя x небольшой. При μ A x = 0 – эксперт абсолютно уверен, что расход теплоносителя x небольшой. При μ A x = 1 – эксперт абсолютно уверен, что расход теплоносителя x нельзя классифицировать как небольшой.

Метод относительных частот. Пусть имеется m экспертов, n 1 из которых на вопрос о принадлежности элемента x ∈ X нечеткому множеству A отвечают положительно. Другая часть экспертов n 2 = m - n 1 отвечает на этот вопрос отрицательно. Тогда принимается μ A x = n 1 n 1 + n 2 = n 1 m .

Пример. Рассмотрим нечеткое множество A , соответствующее понятию «скорость изменения температуры положительная средняя». Объект x – скорость изменения температуры, X - x max ; x max – множество физически возможных значений скорости изменения температуры. Экспертам предъявляются различные значения скорости изменения температуры x и каждому из них задается вопрос: считает ли эксперт, что данная скорость изменения температуры x положительная средняя. Результаты опроса сведены в табл.2.1.

Табл.2.1
f22n7

Для непрерывного представления нечеткой переменной используем какую нибудь из П-образных функций принадлежности, например, Гауссову. Из множества гауссовых функций gaussmf x,σ,c = exp - x - c 2 2 σ 2 через характерные точки функции принадлежности: точку перехода μ A 3= 0,5 и максимум μ A 5= 1 ; проходит функция с параметрами σ = 1,7 , c = 5 . В качестве альтернативного метода перехода от дискретного ряда точек к непрерывному заданию функции принадлежности можно предложить поиск параметров Гауссовой функции принадлежности, максимально близко аппроксимирующей дискретный ряд по критерию СКО (рис.2.4).

f22n8

Рис.2.4. Аппроксимация дискретного ряда () непрерывной Гауссовой функцией принадлежности ( – по характерным точкам, – – по СКО)